
MRINMAYEE BARUA AND WOLF WEYRICH 261 

PATrISON, P., WEYRICH, W. • WILLIAMS, B. (1977). Solid State 
Commun. 21, 967-970. 

PATTISON, P. & WILLIAMS, B. (1976). Solid State Commun. 20, 
585-588. 

RAE, A. D. (1978). Acta Cryst. A34, 719-724. 
SAUNDERS, V. R. (1975). In Computational Techniques in Quantum 

Chemistry and Molecular Physics, edited by G. H. F. 
DIERCKSEN, B. T. SUTCLIFFE & A. VEILLARD. NATO 
Advanced Study Institute Series, Series C: Mathematical and 
Physical Sciences, Vol. 15, pp. 347-424. Dordrecht, Boston: 
Reidel. 

SAUNDERS, V. R. (1983). In Methods in Computational Molecular 
Physics, edited by G. H. F. DIERCKSEN & S. WILSON. NATO 

Advanced Study Institute Series, Series C: Mathematical and 
Physical Sciences, Vol. 113, pp. 1-36. Dordrecht, Boston, Lan- 
caster: Reidel. 

SCHOLKE, W. (1977). Phys. Status Solidi B, 82, 229-235. 
SHAVITr, I. (1963). In Methods in Computational Physics, edited 

by B. ALDER, S. FERNBACH & M. ROTF.NBERG, Vol. 2, pp. 
1-45. New York, London: Academic Press. 

THULSTRUP, P. W. (1976). J. Chem. Phys. 65, 3386-3387. 
WEYRICH, W. (1978). Einige Beitriige zur Compton-Spektroskopie. 

Habilitationsschrift, Darmstadt. 
WEYRaCH, W., PAa'rISON, P. & WILLIAMS, B. G. (1979). Chem. 

Phys. 41, 271-284. 
ZUPAN, J. (1974). Croat. Chim. Acta, 46, 199-207. 

Acta Cryst. (1986). A42, 261-271 

Crystallography of Quasi-Crystals 

BY T. JANSSEN 

Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, 
6525 ED Nijmegen, The Netherlands 

(Received 15 October 1985; accepted 3 February 1986) 

Abstract 

The symmetry of quasi-crystals, a class of materials 
that has recently aroused interest, is discussed. It is 
shown that a quasi-crystal is a special case of an 
incommensurate crystal phase and that it can be 
described by a space group in more than three 
dimensions. A number of relevant three-dimensional 
quasi-crystals is discussed, in particular dihedral and 
icosahedral structures. The symmetry considerations 
are also applied to the two-dimensional Penrose 
patterns. 

1. Introduction 
Recently an Al-Mn alloy was found (Shechtman, 
Blech, Gratias & Cahn, 1984) that shows a number 
of uncommon properties. It has sharp peaks in its 
diffraction pattern, indicating long-range ordering. 
Its point-group symmetry, however, is not one of the 
crystallographic ones but contains fivefold axes, a 
fact that is incompatible with a periodic lattice. The 
phenomenon was considered so remarkable that its 
discovery reached the newspapers and it was stated 
that a new state of matter had been discovered. Five- 
fold axes had already been found in computer simula- 
tions of alloys (Steinhardt, Nelson & Ronchetti, 
1983). Perhaps that is not so surprising, because 
fivefold symmetry was reported much earlier for pack- 
ings in space. Coxeter refers in his beautiful book 
Introduction to Geometry (Coxeter, 1961, 1980) to an 
experiment carded out in 1727 by Stephen Hales who 
studied the form of peas pressed together in a box 
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and observed the appearance of regular dodecahedra. 
A similar experiment with lead spheres was per- 
formed by Marvin in 1939 (see also Matzke, 1950). 

The diffraction pattern is certainly new, but can be 
considered as a special case of a larger and already 
intensively studied class of materials: incommensu- 
rate crystal phases. Such a phase is characterized by 
the fact that its diffraction spots are sharp but need 
for their labelling more than the usual three integer 
indices. The five points of a regular pentagon are 
rationally dependent (their sum is zero), but four of 
them are rationally independent. Therefore, one 
needs at least four integers for the indices of a pattern 
with fivefold symmetry. The difference with the crystal 
phases observed until now is that there is no lattice 
of main reflections, such as present in, for example, 
incommensurately modulated crystals. For incom- 
mensurate crystal (IC) phases it has been shown (de 
Wolff, 1977; Janner & Janssen, 1977; de Wolff, 
Janssen & Janner, 1981) that the symmetry group is 
a group of transformations in a space with more than 
three dimensions. Here we shall address the questions 
how to describe the symmetry in the more general 
case and to study the possible structures. 

In their study of the liquid-solid phase transition, 
Alexander & McTague (1978) showed in the 
framework of Landau theory that under certain con- 
ditions b.c.c, crystal structures are favoured. In the 
same paper they pointed out the possibility of a 
transition to a structure for which the wave vectors 
are points of a regular icosahedron and which has, 
consequently, no space-group symmetry. After the 
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discovery by Shechtman et al. (1984), Landau theory 
was again used to study the latter possibility. It was 
shown (Bak, 1985a, b; Mermin & Troian, 1985; Jaric, 
1985) that higher-order terms can be responsible for 
the stability of such an 'icosahedral' structure. 

In the context of the study of the new materials 
the term quasi-crystal has been coined (Levine & 
Steinhardt, 1984). The definition of this concept, 
however, seems to me too restrictive and does not 
account for the relation with IC phases. It should be 
noted that also in the domain of IC phases the ter- 
minology is not fully satisfactory. A structure is called 
incommensurate if the points in its Fourier transform 
contain at least four rationally independent vectors. 
In other words, when each vector of the Fourier 
transform is of the form 

k =  ~ z ia*i  , z i integers, n > 3 ,  (1.1) 
i=1  

whereas there are no integers m l , . . . ,  mn such that 
Y. mia* =0. If n =3 one has a periodic structure. 
When the wave vector of an IC phase changes (for 
example with temperature) in a smooth way it passes 
an infinite number of rational values, for which the 
structure becomes periodic. The properties of the 
crystal will also change in a smooth fashion, such 
that it is reasonable to consider the dense set of 
commensurate phases on the same footing as the IC 
phases and to consider also a higher-dimensional 
space group as its symmetry group. This fact is in 
contradiction to the term 'incommensurate phase'. It 
would be better to have a term covering both incom- 
mensurate and commensurate phases. 

If n = 3 in (1.1) the structure is periodic. If n > 3 
it is no longer periodic but quasi-periodic. A quasi- 
periodic function is obtained as follows. Consider a 
func t ionf (x~ , . . . ,  xn) which is periodic in each of its 
n variables: f(xl + 1,.. . ,  xn) =f(xl , . . . ,  x,) etc. Take 
n rationally independent numbers a b . . . ,  an. Then 
the function g(x)=-f(atx,..., anx) is called quasi- 
periodic. Because its Fourier spectrum consists of 
integral linear combinations of 2zr/a~,..., 2zr/an, it 
may also be called a one-dimensional incommensu- 
rate structure. The function with wave vectors of the 
form (1.1) is clearly a generalization of such a quasi- 
periodic function. It has the property that for each 
positive number e there is a translation such that the 
transformed function differs from the original one by 
less than e, which explains the term 'quasi-periodic'. 
IC phases are, therefore, also quasi-periodic. 

The new class of structures obviously satisfies the 
requirements for an IC structure. The difference is 
that modulated and composite structures show a lat- 
tice of main reflections. In systems with noncrystallo- 
graphic symmetry operations this is impossible. We 
shall call the systems in this class quasi-crystals. In 
the following we show that the symmetry consider- 

ations for modulated IC phases are readily general- 
ized to quasi-crystals. 

The organization of the paper is as follows. In § 2 
the method to describe the symmetry of modulated 
crystals is briefly recalled. In § 3 a two-dimensional 
quasi-crystal is discussed to exemplify the changes 
that are needed in the formalism. In § 4 this same 
structure is applied to an interesting covering in the 
plane, the Penrose tiling. In § 4 a way to describe 
quasi-crystals is formulated. In § 5 the most important 
three-dimensional quasi-crystal structures and their 
symmetries are discussed. 

2. IC phases with a lattice of main reflections 

For most IC phases studied so far a conspicuous set 
of main reflections stands out among the diffraction 
spots and this set belongs to a three-dimensional 
lattice, the lattice of main reflections. The spots that 
do not belong to this set are the satellites. Every spot 
of the diffraction pattern corresponds to a vector k 
that can be written in this case as 

3 d 

k =  E zia*+ E * (2.1) z3+ja3+j, 
i=1 j = l  

where a*, a2*, a3* form a basis of the lattice of main 
reflections. The whole collection of all vectors of the 
form (2.1) forms a set, which we shall denote in the 
sequel by M*, that is clearly not a three-dimensional 
lattice, but that can be considered as the projection 
on the three-dimensional space of a lattice in 3 + d 
dimensions. This is the observation behind the 
introduction of a higher-dimensional symmetry 
group. The problem is to find the components in the 
additional space and to define what is meant by 
'distance' in that space. In the following we describe 
the construction of a basis in the higher-dimensional 
space [which will be given in (2.5) and (2.7)]. It is 
based on some simple theorems from group theory. 

The relations between the additional components 
of the wave vectors can be found as follows (Janner 
& Janssen, 1979). Consider the point-symmetry group 
of the diffraction pattern. If R is an element of this 
group K it transforms main reflections to main reflec- 
tions and satellites to satellites. The action on the 
vectors a * , . . . ,  a3*÷d is given by 

3 

R - l a  * = Y~ i =  1 ,2 ,3  (2.2) 
k = l  

3 

R-la3**j = E FM(R)j,a*z 
l = l  

d 

+ ~ F~(R)jma*3+,,, j= 1,.. . ,  d. (2.3) 
r n = l  

Therefore, to each element R corresponds a (3 + d)- 
dimensional integral matrix F(R) 

( F~(R) 0 ) (2.4) 
r ( R ) =  r~(R) r , ( R )  " 
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These matrices form an integral reducible representa- 
tion of the group K. According to well known 
theorems in group theory there is a basis in 3+ d 
dimensions such that the representation becomes 
orthogonal and the direct sum of two representations. 
In other words, there are pairs (R, R~) of orthogonal 
transformations, in three and d dimensions respec- 
tively, corresponding to each matrix F(R). The three- 
dimensional space is the ordinary space, denoted by 
VE, and the d-dimensional space is the orthogonal 
complement, denoted by Vx. In this way the scalar 
products of vectors in the internal space and the 
metrical relations there are determined. They are, 
however, not completely determined. If the rep- 
resentation Fr(K) has p irreducible components, 
there are still p free common factors, in each subspace 
one. (It is clear that nothing happens to the construc- 
tion if one multiplies all components in V~ by a 
common factor c.) Apart from this freedom the basis 
on which the orthogonal transformation Rr has the 
form F~(R) is fixed. We denote this basis of V~ by 
b l . , . . . ,  ba.. The basis in (3+ d)-dimensional space 
is then 

d * =  (a*,O), i = 1 , 2 , 3 ;  
(2.5) 

d3*+j = (a3*+j, bff) ,  j=l,...,d. 
The set M* is just the projection of the lattice Z* 
spanned by these vectors. 

As worked out in detail by Janner & Janssen (1977), 
one constructs from a three-dimensional quasi-peri- 
odic function with Fourier spectrum spanning M* 
another function fs in 3 + d dimensions as 

fs(r, r~ )=El (k )exp[ i (k r+k~r~) ] ,  (2.6) 

where f (k)  is the Fourier component o f f  with vector 
k, and (k, kt) is the unique vector of 2;* that is 
projected on k in M*. Then one can show that f~ is 
a periodic function with the periodicity of the lattice 
X that is the dual to Z* and has basis 

d/=  (ai, -Aa / ) ,  i = 1, 2, 3; 
(2.7) 

d3+j = (0, bj), j = l , . . . , d ,  

where b l , . . . ,  ba is the basis in V1 dual to b * , . . . ,  b* 
and Aa~ is fixed by the requirement d~. d* = 80. Con- 
sequently, f~ is invariant under a space group in 3 + d 
dimensions with lattice ,~. This space group is called 
the symmetry group of the IC phase and accounts 
for selection rules, systematic extinctions etc., just as 
a three-dimensional space group does for a periodic 
structure. For quasi-crystals one may generalize this 
procedure and construct also a corresponding peri- 
odic structure in more dimensions. 

3. The symmetry of a two-dimensional quasi-crystal 

To study the procedure for quasi-crystals we first 
consider a two-dimensional example. Suppose the 

diffraction pattern has fivefold symmetry and all vec- 
tors of the pattern are integral linear combinations 
of the five vectors pointing to the corners of a regular 
pentagon: 

en = a(cos 2~n/5, sin 27rn/5). (3.1) 

Because the sum of these vectors is zero each vector 
can be expressed as 

4 
k= E z,a*, a*=e/ .  (3.2) 

i=1 

The set M* of all these vectors is invariant under a 
fivefold rotation a, a mirror/3 and the central inver- 
sion 3,. The action of these elements on the four basis 
vectors is given by (!10 !) 

F(a)= 0 1 
0 0 

- - 1  - 1  - 

0 1 0 ,  
F(3) = 

1 0 

0 0 

F('y) = -1 0 
0 -1 
0 0 - 

(3.3) 

These matrices generate a group isomorphic to/95 x 
C2, the direct product of the non-crystallographic 
dihedral group Ds and the group consisting of unity 
and central inversion. The four-dimensional rep- 
resentation is reducible. The group D5 x C2 has four 
gerade and four ungerade representations. (The four 
representations of/95 in Table 1 can be combined 
with either +1 or -1  for the central inversion.) The 
representation F(K)  is the sum of the two ungerade 
two-dimensional representations. The representation 
carried by the ordinary space, which is an invariant 
subspace, is the ungerade representation stemming 
from F3 as one sees from the character of the 72 ° 
rotation a which is 2 cos (27r/5) = z. The 72 ° rotation 
in VE forms a pair with a 144 ° rotation in V~, because 
the other two-dimensional irreducible component of 
F(c~) has character -1  - ~, which is 2 cos (4¢r/5). 

The basis a * , . . . ,  a* of M* is the projection of a 
basis d * , . . . ,  d* of a four-dimensional lattice X*. 
From the decomposition of the representation F(K)  
one knows the pairs (R, RI). The basis of ,X* has to 
satisfy the requirement that these pairs are represen- 
ted on this basis by the matrices F(R). This fixes the 
basis up to a common scale factor e: 

d* = (ei, ce2/), i =  1 , . . . ,  4. (3.4) 
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Table 1. Character tables for some dihedral and the 
icosahedral groups 

/95, ~" = ( v ~ -  1 ) /2  
E l e m e n t s  e o~ a 2 /3 

F t 1 1 1 1 
/'2 1 1 1 -1  
F 3 2 ~" - 1 - ~ "  0 
/'4 2 - 1 - z  ~" 0 

D8 
E l e m e n t s  e a of 2 a 3 ot 4 /3 a /3  

F 1 1 1 1 1 1 1 1 
F 2 1 1 1 1 1 - 1  - 1  
/'3 1 - 1  1 - 1  1 1 - 1  
/"4 1 --1 1 --1 1 --1 1 
F 5 2 x/2 0 -x/2 - 2  0 0 
/'6 2 0 - 2  0 2 0 0 
/'7 2 -x/2 0 ,¢~ - 2  0 0 

Dto ,  ~" = ( V ' 5 - 1 ) / 2  
E l e m e n t s  e a a 2 cx 3 ot 4 a 5 f l  or/3 

rl 1 1 1 1 1 1 1 1 
/'2 1 1 1 1 1 1 --1 --1 
F 3 1 - 1  1 - 1  1 - 1  1 - 1  
F 4 1 - 1  1 - 1  1 - 1  - 1  1 
/'5 2 1+~" r -~" - 1 - ~ "  - 2  0 0 
F 6 2 r - 1 - r  - 1 - r  z 2 0 0 
/ '7 2 - r  - 1 - r  1+~" ~" - 2  0 0 
F 8 2 - 1 - ~ "  ~" r - 1 - r  2 0 0 

D I 2  
E l e m e n t s  e r~ ot 2 o~ 3 ot 4 O~ 5 O~ 6 

F 1 1 1 1 1 1 1 1 
/'2 1 1 1 1 1 1 1 
F 3 1 - 1  1 - 1  1 - 1  1 
/'4 1 - 1  1 - 1  1 -1  1 
F 5 2 ~ 1 0 - 1  - ~  - 2  
F 6 2 1 - 1  - 2  - 1  1 2 
F 7 2 0 - 2  0 1 0 - 2  
F8 2 - 1  - 1  2 - 1  -1  2 
/'9 2 - , ~  1 0 -1  ~ - 2  

I,  r = ( x / 5 - 1 ) / 2  
E ~ O~ 2 

1 5 5 

1 1 1 
3 -~- 1+~- 
3 l + r  - ~  
4 - 1  - 1  
5 0 0 

E l e m e n t s  /3 a/3 
O r d e r  3 2 

Ft 1 t 
r~ o -1 
r3 o -1 
F 4 1 0 
F~.  -1  1 

13 ~/3 
1 1 

- 1  -1  
1 - 1  

- 1  1 
0 0 
0 0 
0 0 
0 0 
0 0 

The lattice Z in direct space has a basis that is dual 
to (3.4): 

fli =2[e , -eo ,  (1/c)(e2,-eo)]. (3.6) 

This lattice belongs to the same Bravais class as Z* 
There is only one Bravais class in this system and 
according to Brown et al. (1978) to this Bravais class 
correspond four geometric classes, five arithmetic 
classes and five space groups (all symmorphic). 

An example of a function that is quasi-periodic 
and the restriction of a periodic four-dimensional 
function with lattice Z is a density function 

4 

f ( r )  = E cos (e. .  r). (3.7) 
n = 0  

The corresponding periodic function in four 
dimensions is 

4 

fs(r, r j ) =  Y c o s ( e , . r + c e 2 , . r , ) .  (3.8) 
n = 0  

The symmetry group of this periodic density function 
in four dimensions is the symmorphic holohedral 
space group of the lattice 2. The restriction to the 
two-dimensional space rj = 0 is quasi-periodic and 
can be called a quasi-crystal. A picture of this function 
is given in Fig. 1. 

4. Penrose tilings 

Another example of a two-dimensional quasi-crystal 
with fivefold rotation axes is the so-called Penrose 
tiling. Penrose (1974) showed that it is possible to 
cover the plane in an aperiodic way by means of tiles 
of one of two kinds. The tiles may have the forms 
known as 'dart'  and 'kite' (Fig. 2). Another pair of 
tiles consists of rhombuses with equal edges, one with 

The lattice Z* generated by (3.4) is the decagonal 
lattice denoted as XIX/ I  by Brown, Billow, 
Neubiiser, Wondratschek & Zassenhaus (1978). The 
distance in the four-dimensional space is determined 
by the metric tensor g which has components gij = 
d,* .dL 

(i B A B 
g =  B A (3.5) 

C B A 

with A = I + c  2, B = ( r / 2 ) - [ ( l + r ) / 2 ] c  2, C =  
- ( A + 2 B ) / 2 ,  where z = ( v ~ - l ) / 2  is related to the 
golden ratio. 

Fig. 1. Res t r i c t i on  o f  a p e r i o d i c  f u n c t i o n  in f o u r  d i m e n s i o n s  to  
the  t w o - d i m e n s i o n a l  p l a n e  VE. In  the  d a r k  r eg ions  the  v a l u e  o f  
the  f u n c t i o n  is pos i t ive ,  in the  l ight  r eg ions  nega t ive .  T h e  p e r i o d i c  
f u n c t i o n  is i n v a r i a n t  u n d e r  the  h o l o h e d r a l  s p a c e  g r o u p  o f  the  
d e c a g o n a l  lat t ice.  
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angles 72 and 108 °, the other with 36 and 144 °. A 
large number of interesting properties for these tilings 
has been revealed (Gardner, 1977; de Bruijn, 1981). 
In particular, they are self-similar. In the covering by 
rhombuses the vertices are of the form Z z,e, with z, 
integer and e, as in (3.1). The collection of all points 
of this form would be dense in the plane but for a 
Pertrose pattern not all quintuples (Zo,. . . ,  z4) are 
all0wed. Which quintuples occur may be determined 
using a theorem by de Bruijn (1981). The same 
theorem is used to find a periodic pattern in four 
dimensions such that the intersection with the two- 
dimensional plane VE is a Penrose tiling. 

De Bruijn considers the vertices of a Penrose pat- 
tern as points in the complex plane. They are of the 
form 

4 

x =  E zj~ -j, (4.1) 
jffi0 

where s r = exp (2¢ri/5). One defines a convex set in 
the complex plane for every value of a parameter p as 

Vp--{ ~ Aj~2J]o<--Aj<I, ~ Aj-p} .  (4.2) 
j----O j = 0  

Then the point x (4.1) belongs to a Penrose pattern, 
specified by five real numbers yj with sum 0, if and 
only if 

4 4 

(zj-yj)~ "2j belongsto Vp with p =  ~ zj. (4.3) 
j=o j=o 

This theorem can be used to construct a periodic 
structure in four dimensions which has as intersection 
with a two-dimensional hyperplane a Penrose pattern, 
and has the periodicity of the lattice 2 (3.6). One 
notices that 7. zjs r-j corresponds to an element Y'. zjej 

• in VE, whereas ~ (zj - yj)¢zj corresponds to a lattice 
point in VI. 

Consider a point S in the four-dimensional space 
as the origin of the lattice 2. The point S may be 
chosen to have an external component zero: S = ~ sid~ 

and SE = 0. The lattice has point-group symmetry 
D5 x (?2. In each unit cell we take five Wyckoff posi- 
tions: the points -p(d l+d2+da+d4) /5  with p =  
0, 1, 2 , . . . ,  4. The position with p = 0 has site sym- 
metry D5 x C2, the others have site symmetry Ds. Such 
a point in the unit cell at ( z ,  z2, z3, z4) has a com- 
ponent rE: 

4 4 

rE = Y~ ( z i -p /5 ) (d , )E=(2)  ~. zjej, (4.4) 
i=z j=o 

4 
when Zo is such that p = Y~j--o zj, and a component r~ 
in 11i: 

4 

r,=~ E zje2j+ s,. (4.5) 
j=0 

Because sz can be written as ~ sje2j de Bruijn's 
theorem states that rE belongs to a Penrose pattern 
if rx is inside a convex domain Vp in Vz defined by 

Vp={~ ~ Aje2jJO---Aj<I, ~ Aj=p}.  (4.6) 
j = O  j = O  

One can reformulate this condition as follows. Attach 
to each of the five mentioned Wyckoff positions a 
two-dimensional pentagon lip parallel to Vz (Fig. 3). 
If such a pentagon intersects VE, the intersection is 
a point (two perpendicular two-dimensional hyper- 
planes in a four-dimensional space intersect at a 
point) which has rE (4.4) as component in VE and 
belongs to the Penrose pattern. 

Hence a Penrose pattern may be obtained as the 
intersection of ordinary space with a periodic struc- 
ture with disconnected pentagons at five Wyckoff 
positions per unit cell of a lattice ~;. Different patterns 
are obtained by choosing another origin S for 2. An 
example of the intersection of the given four- 
dimensional structure with VE is given in Fig. 4(a). 
In Fig. 4(b) the intersection points are connected 
yielding a covering of the plane by rhombuses. The 
five pentagons in the unit cell are left invariant by 
the holohedral point group D5 x C 2 (D5 leaves each 
pentagon invariant, the central inversion interchanges 

cussed in the preceding section. 

A 8 C O E 
0 l 2_ 3_ ! 

5 5 5 5 

Fig. 2. Tiling of the plane by means of 'darts' and 'kites' (after 
Gardner, 1977). 

the pentagons with p = 2 and 3, and also those with 
p = 1 and 4). Therefore, the symmetry group of the 
Penrose pattern is the holohedral space group dis- 

Fig. 3. The five pentagons attached to the five Wyckoff positions 
(p, p, p, p)/5 in the unit cell of the decagonal lattice. The pen- 
tagon for p = 0 has shrunk to a point. 
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The crystallographic aspects of Penrose tiling have 
previously been studied by Mackay (1982), who 
determined the diffraction pattern by optical means. 
Kramer (Kramer, 1982, 1985; Kramer & Ned, 1984) 
has given a crystallographic discussion of aperiodic 
tilings that is a generalization of that by de Bruijn. 

From Fig. 2 one can understand why the diffraction 
pattern of a quasi-crystal shows sharp peaks although 
there is no lattice periodicity. In the von Laue 
approach diffraction is the result from interference 
between waves reflected from equidistant parallel 
planes. In the figure one can see five sets of parallel 
lines. Now there are two different distances between 
neighbouring lines and their ratio is 1 : r. 

5. Quasi-crystals 

The fact that the four-dimensional structure corre- 
sponding to a Penrose pattern consists of discon- 
nected elements is another difference with modulated 
and composite structures. In the latter two cases the 
embedding of the quasi-periodic point structure in a 
higher-dimensional space consists of lines (d = 1) or 
d-dimensional hyperplanes without boundaries. Next 
to the non-crystallographic point-group symmetry or 

-8 
-8 

I I 

8 

' 0  0 0 0 0  00  0 0 00  0 
O0 0 0 0 0 O0 0 0 0 0  0 0 0 0 
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O0 0 0 0 00 0 0 
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4)) 0 O0 O g o  0 0 0 0  0 0 O0 
' O0 0 0 0 0 0 0 0 O0 O00  0 0 
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O0 0 0 0 0 O0 0 0 0 0 0 0 
0 0 0 0 l O  0 0 0 t~ O0 0 01 0 0 

I 
-/, 0 t, 8 x 

(a) 

I I 

-t, 0 
(b) 

-8 

Fig. 4. (a) The intersection of a pattern of disconnected pentagons 
with D 5 x C2 symmetry in four dimensions with the two- 
dimensional plane Ve. (b) The intersection points are the vertices 
of a tiling of the plane by means of rhombuses. 

the absence of a lattice of main reflections, the sharp 
diffraction spots and the incommensurate diffraction 
pattern this is an important characteristic of quasi- 
crystals. 

This same phenomenon occurs in a one- 
dimensional structure which has also been called a 
quasi-crystal and which we shall call a Fibonacci 
chain. According to our former definition there are 
no one-dimensional quasi-crystals because the only 
two point groups here are crystallographic. Now con- 
sider a chain of particles with distance between neigh- 
bours either 1 or r = ( v ~ - l ) / 2 .  There are several 
equivalent prescriptions for the order of the different 
intervals. For instance, consider the sequence given 
by y,  = y o +  nr. If y,  and y,+] have the same integer 
part x,,+] = x, + r, otherwise x,+~ = x, + 1. The points 
one obtains in this way are all of the form m + m-, 
and the average distance is d = 3 r -  1. It can be shown 
that the points can be interpreted as a modulated 
chain with positions 

x , ( t ) = x o + n d + ( r - 1 ) [ f r a c ( m ' + t ) - ½ ] .  (5.1) 

The argument t is the phase of the modulation. For 
t = ½ orie obtains a chain with inversion symmetry. 
Therefore the chain consists of short and long inter- 
vals (S and L, respectively) with length ratio r ' l .  
An example is the sequence 

. . .  S L S L L S L S L L S L L S L S  . . . .  

From (5.1) one sees that the modulation wave vector 
is 2err/d,  the modulation function is the discon- 
tinuous function f ( x )  = A frac (x) + B, and the wave 
vectors of the Fourier spectrum are of the form (1.1) 
with n = 2 and 

a*1=ZTr/d; a*=2"rrz /d .  (5.2) 

In the standard way one can embed the Fibonacci 
chain in a two-dimensional space. The chain is again 
the intersection of Ve with a periodic structure con- 
sisting of disconnected line elements on lattice points 
(Fig. 5 a). In contrast to the embedding of the Penrose 
pattern these elements are not parallel to V,. 

Vl V I 

(a) (b) 
Fig. 5. (a) Embedding of the Fibonacci chain as modulated crystal. 

(b) An equivalent embedding in two dimensions. The Fibonacci 
chain is the intersection of the periodic structure consisting of 
line elements with the line V~. 
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For a three-dimensional quasi-crystal the spots of 
the diffraction pattern are of the form (1.1) and there 
is no lattice of main reflections. Also in this case the 
set M* can be seen as the projection of an n- 
dimensional lattice Z*. The procedure of embedding 
is a generalization of that for modulated crystals. 
Consider the point group K that leaves M* invariant. 
Then for each element R of K one has 

R - l a  * =  ~ r (R) , ja* .  (5.3) 
j= l  

The matrices F(R) form an integral n-dimensional 
representation of K that is equivalent to an 
orthogonal one. Because the orthogonal representa- 
tions leave the ordinary space generated by a * , . . . ,  a* 
invariant, F(K) is ( 3 + d )  reducible. The matrices 
correspond to pairs (R, Re). The problem now is to 
construct a basis 

d* = (a*, b*), i = l , . . . , n ,  (5.4) 

such that the elements (R, RI) are represented by 
F(R) on this basis. 

In the n-dimensional space the dual basis 
d l , . . . ,  d,, defined by d~. d* = 8~, generates a lattice 
,Y. The action of this lattice on the quasi-periodic 
structure in VE gives a periodic structure in n 
dimensions. The symmetry group of the latter is an 
n-dimensional space group that again is called the 
symmetry group of the quasi-periodic structure. The 
embedding is unique up to a common factor for each 
irreducible component of F(K) in VI. 

One can apply this method also to the quasi-peri- 
odic Fibonacci chain. The generators of M* are given 
by (5.2) which can be seen as the projection of the 
basis of a two-dimensional lattice. A solution is given 
by 

d1*=(27r/d)(1, at), d*2=(27r/d)(%-a), (5.5) 

for arbitrary a. Then the dual basis is 

d1=[a/27r(2-1")](1, r/a), 
(5.6) 

dE= [ d/2qr(2- ~')]( % -1/ a). 

The Fibonacci chain is obtained as the intersection 
of VE with a periodic structure consisting of line 
elements parallel to V~ at the lattice points of Z, 
whereas the origin of the lattice is an arbitrary point 
in the two-dimensional space. For a = 1 the structure 
is shown in Fig. 5(b). 

6. Some three-dimensional quasi-crystals 

The construction in the preceding section is valid for 
arbitrary dimension. However, from a practical point 
of view there are restrictions: the description loses its 
meaning when the dimension n exceeds three by too 
much. Therefore, we shall restrict ourselves here to 
the case n <- 6. The generators of M* form a set that 

is invariant under a finite point group. In the LandaU- 
theory formulation the vectors of M* all belong to 
the same representation of the Euclidean group E(3) 
and are, therefore, of equal length. Then the question 
is: what are the possible structures in three dimensions 
with a Fourier spectrum that belongs to a set M* that 
is invariant under a finite non-crystallographic point 
group and is of rank less than six (i.e. has six or less 
generators). Because the diffraction pattern is 
invariant under the central inversion the groups to 
be considered are direct products of the group consist- 
ing of identity and central inversion and a group that 
is one of the dihedral groups D5, Ds, Dlo, D12 o r  the 
icosahedral g roup / .  

A collection of vectors generating a set M* 
invariant under D2m x (?2 (with m = 4, 5 or 6) may lie 
in a plane and form then the corners of a regular 
2m-gon. The rank of M* in these cases is four and 
the corresponding four-dimensional lattice 2;* belong 
to the octagonal, decagonal and dodecagonal Bravais 
classes, respectively, in the terminology of Brown et 
al. (1978). For m = 5 it is just the lattice discussed in 
section three. In this case the structure is essentially 
two dimensional. 

A three-dimensional structure is obtained by 
adding a vector perpendicular to the 2m-gon. The 
rank of M* is then five. Generators for the corre- 
sponding groups F(K) are given in Table 2. These 
representations are 2 + 2 + 1 reducible, as can be seen 
using the character table (Table 1). 

Non-planar generating sets for M* which are 
obtained by the action of the dihedral point groups 
on a single vector are shown in Fig. 6. The rank of 
M* is also five in this case. The set invariant under 

(a) (b) 

(d) (e) 

(c) 

(f) 
Fig. 6. Generating sets of wave vectors for a quasi-periodic struc- 

ture. The sets are invariant under a finite point group. (a) 
DsxC2, (b) DsX C2, (c) DloX C2, (a) D12x C2, (e) faces of 
the dodecahedron, ( f )  edges of the dodecahedron. Vectors with 
negative z component are indicated by filled circles, with positive 
z component open circles. In ( f )  the arrows have z component 
z e r o .  
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D5 is not invariant under Dlo now. The set for D12 
generates the same M* as the regular dodecagon plus 
a perpendicular vector, discussed in the preceding 
paragraph. For Ds and D~o the vectors of Fig. 6 
generate a subset of the corresponding M* discussed 
in the preceding paragraph: only those spots occur 
for which zl + z2 + z3 + z4 + z5 is even. Therefore, the 
corresponding lattices Z* are centrings of those of 
the preceding paragraph. 

So in total one obtains six Bravais classes for these 
four dihedral groups. The holohedral point groups 
Dp x C 2 have subgroups Cp, Cp x C2 and Dp ( p = 
5, 8, 10 or 12) that belong to the same Bravais class. 
For each of the corresponding matrix groups one may 
determine the possible space groups (Zassenhaus, 
1948; Brown, 1969; Fast & Janssen, 1971). 

We shall treat the icosahedral case in more detail, 
because it is the case of the Al-Mn alloy. Consider 
first the case that the set M* is generated by the 12 
vectors that point to the faces of a regular dodecahe- 
dron. Among the 12 vectors six are rationally 
independent. 

a* = (0, 0, 1), 

a* = (sin 0 cos 2"rrn/5, sin 0 sin 27rn/5, cos 0), 

n = 2 , . . . , 6 .  (6.1) 

Here cos / 0 = ~. The action of I × Cz on this basis is 
given by the matrix group F(K)  with generators 

1 

0 

0 

0 

0 

~0 

0 

1 

0 
r(/3)= 

0 

0 

0 

0 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

1 0 0 0 0 

0 0 0 0 1 

0 0 0 0 0 

0 0 0 1 0 

0 -1  0 0 0 

0 0 -1  0 0 

1 0 0 0 0 

(6.2) 

and the central inversion. This six-dimensional rep- 
resentation is reducible: the two irreducible com- 
ponents are the two non-equivalent ungerade three- 
dimensional irreducible representations of I x C2 (the 
character table of the icosahedral group I is given 
in Table 2). This is seen, in the standard way, from 
the character. For the rotation group I the char- 
acter of the representation is X( e, a, a 2,/3, a/3 ) = 
(6, 1, 1, 0, -2) .  This is the sum of the characters of/ '2 
and F3. The rotations in Ve correspond to the irreduc- 
ible component F3 because there the character is 
1+2  cos (rotation angle), which is 3, 1 +~-,-z,  0 and 

-1  for e, a, a 2,/3 and a/3, respectively. A basis for 
the representation in the six-dimensional space which 
projects onto the basis (6.1) is 

d* = (a*, ca*), d* = (a*, - c a * )  (6.3) 

(arbitrary constant c). 
The 20 vertices of the dodecahedron form the 

centres of the faces of an icosahedron. One obtains 
20 vertices of an icosahedron by the action of I on 
the vector a * + a * + a * .  Among these 20 vectors of 
M* there are again six rationally independent ones. 
If one denotes these by v * , . . . ,  v* one can express 
them in terms of the basis (6.1). 

with 

6 

v*= E Sod*, 
j = l  

S =  

1 1 1 0 0 0 

1 0 1 1 0 0 

1 0 0 1 1 0 

1 0 0 0 1 1 

1 1 0 0 0 1 

0 1 0 -1  0 1 

(6.4) 

Because det (S) = 1, the vectors v* also form a basis 
for M*. Hence a set M* generated by the 12 vertices 
of an icosahedron belongs to the same Bravais class 
as the one generated by the 20 vertices of a 
dodecahedron. 

Another lattice is obtained if the set M* is gener- 
ated by the 30 edges of the icosahedron. These are 
the 30 vectors obtained by the action of I on a* + a2*. 
Also in this case there are six rationally independent 
ones, which may be expressed in terms of (6.1). 

with 

6 
f*= ~, S~jd*, 

j=l 

S =  

1 1 0 0 0 0 

1 0 1 0 0 0 

1 1 0 0 0 0 

1 0 0 1 0 0 " 

11 0 0 0 0 1 

0 1 0 0 0 

(6.5) 

Because det ( S ) = 2  the lattice obtained from the 
embedding of f * , . . . ,  f* is a centring of that spanned 
by d * , . . . ,  d*. The diffraction spots of such a lattice 
have components zi with respect to the basis (6.3) 
that satsify the reflection condition: ~ z i -  even. 

A related lattice is that spanned by the six vectors 
w*" 

6 

W*i = ~ Si jd~,  
j=1 
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Table 2. The generators o f  the matrix group F for some of  the dihedral groups, in six Bravais classes 

Group Centring F ( a )  F(/3) Decomposition 

o (i 10  0 i ) 0  0 (! 0 0 0 0 0 
0 0 1 0 0 1 F~+F3+F4 
0 0 0 0 1 0 
0 0 0 1 0 0 O /  

D8 -- t_i  1 0 0 ! ) 0  1 0 ( i  0 0 0  ! )  0 0 -1 
o o ~ o -1 o r,+r~+r7 
0 0 0 1 0 0 
0 0 0 0 0 0 

Dto 

zi = even 

5 

z I = even 
Dtz 

(i ° °1ool oO°1 looO1 ! ) ( i  o o 1 i ) o o O 1  oO°1 oO°° G+G+~ 

( 2 0 1 0  (i 1 0 0 1 )  0 1 -1 0 0 0 
- -1 0 0 0 0 1 

-1 0 0 0 1 0 
0 0 0 1/  0 0 0 

G+G+G 

with 

S =  

1 1 - 1  - 1  1 -1' 

0 0 2 0 0 0 

1 -1  -1  -1  -1  1 

0 0 0 2 0 0 

0 0 0 0 2 0 

- 1  1 1 1 - 1  1 

(6.6) 

Here det ( S ) =  32 and the centring is not equivalent 
with the former. The diffraction spots have com- 
ponents zi with respect to the basis (6.3) that are 
either all even or all odd. Icosahedral quasi-crystals 
belong either to the Bravais class of the lattice gener- 
ated by (6.3) or to one of its centrings. Quasi-crystals 
as projections of structures in six dimensions have 
already been discussed by various authors (Duneau 
& Katz, 1985; Bak, 1985a, b; Elser, 1985; Kramer, 
1985). Bak has already noticed the difference between 
the two icosahedral lattices (6.3) and (6.5) which he 
calls s.i. and b.c.i., respectively. 

Corresponding to each of these Bravais classes are 
two arithmetic crystal classes: in each Bravais class 
one with point group I x (72 and one with L For each 
of these arithmetic crystal classes one may determine 
the possible space groups. Calculation according to 
Fast & Janssen (1971) shows that the classes with 
point group I x (72 have one, two or three space 
groups, whereas those with point group I have three 
space groups each. The generators and nonprimitive 
translations for these space groups belonging to the 
icosahedral system are given in Table 3. These should 
describe the symmetry of icosahedral quasi-crystals. 
Because non-symmorphic symmetries may occur it is 
worthwhile looking for systematic extinctions. 

The basis of the direct lattice ,~ corresponding to 
the reciprocal lattice ,~* generated by the vectors d* 
of (6.3) is readily constructed. It is formed by the 
vectors 

- ~ [ a l ,  (1 /c )a*] ,  dn I * dl 1 * = ~[a,, - (1/c)a*,] .  (6.7) 

The metric tensor of the six-dimensional lattice ~* 
is given by the scalar products 

d * . d * = l + c 2 ;  d * . d * = } ( 1 - c 2 ) 4 ~ ,  i # j .  (6.8) 

The direct lattice corresponding to the lattice with 
basis (6.5) belongs to the Bravais class of the 
reciprocal lattice with basis (6.6) and vice versa. These 
two direct lattices are centrings of that with basis 
(6.7). The first is a centring given by the two points 
(000000) and (½ ½ ½ ½ ½ ½), the second by the 32 points 
(o0oooo),  (½ ½ oooo),  ' ' (~o~ooo), . . . ,  (oooo½½), 
(½½½½½9, (oo½½,, ~), (½" . . . ,  ~ ~ ½ 00). The correspond- 
ing arithmetic crystal classes with point group I can 
be denoted by P532, I532 and F532, res__pectively, 
and those with point group I x (72 by P5~m, I53m 
and F53m, 

For the choice c = 1 the basis vectors (6.3) are of 
equal length and mutually perpendicular according 
to (6.8). In that case the lattice Z* is hypercubic. So 
the set M* for an icosahedral quasi-crystal is the 
projection of a six-dimensional hypercubic lattice. 
The direct lattice is for c = 1 also hypercubic. For a 
general choice of c the metric tensor has two param- 
eters. 

7. Concluding remarks 

We have shown that quasi-crystals, which have now 
been observed experimentally, are special cases of 
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Table 3. G e n e r a t o r s  F a n d  n o n p r i m i t i v e  t r a n s l a t i o n s  t o f  t he  s p a c e  g r o u p s  in t he  t w o  i c o s a h e d r a l  s i x - d i m e n s i o n a l  

B r a v a i s  c l a s s e s  

The generators for the groups with point group I x (72 are the same as for those with point group I plus the central inversion (p = 0, 1 
or 2). 

P532 
I532 
F532 
P53m 

I53m 
F53m 

r(~) r(8) r(w) 

(;oooo il (i ;I(-; ° ° ° °  ;) 0 I 0 0 0 0 0 0 , 0 0 0 
0 0 1 0 0 0 0 1 0 -1  0 0 
0 0 0 1 0 -1  0 0 0 0 -1  0 
0 0 0 0 0 0 -1  0 0 0 0 -1  
1 o o o 1 o o o o o o o - 

t ( ~ )  t(~) t(~) 
p/5 0 p/5 0 0 4p/5 0 0 0 0 0 0 
p/5 p/5 - p / 5  2p/5 4p/5 - p / 5  0 0 0 0 0 0 

- 3 p / 1 0  p/lO p/5 0 2p/5 4p/5 0 0 0 0 0 0 
o o o o o o o o o o o o o o o o o o 
o ½ ½ ½ ~ o o o o o o o o o o o o o 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o ~ o o ~ ½ o o o o o o o o o o o o 
0 0 ~ ~ 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 
o ~ ~ ~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 

incommensurate crystals. The symmetry description 
may be given, similarly to IC phases, by an embedding 
into a higher-dimensional space. This situation is 
actually very common in physics. Often the symmetry 
of a system is larger than the purely Euclidean one. 
The larger symmetry group may sometimes be inter- 
preted as a transformation group in more than three 
dimensions. The best known example is the hydrogen 
atom, where the symmetry (for bound states) is given 
by the orthogonal group in four dimensions. In IC 
phases one encounters the same situation, but there 
the additional dimensions have a simple physical 
interpretation: that of the phase of the modulation. 

The point group on which the higher-dimensional 
space is constructed is always reducible in a sum of 
three- and d-dimensional components. The resulting 
lattice, however, can in principle have a higher sym- 
metry. For example, the two-dimensional structure 
considered in § 3 gives rise to a decagonal lattice in 
four dimensions. The embedding, however, still con- 
tains an arbitrary factor c, which represents the length 
scale in the additional space. If the factor c is chosen 
to be unity, the resulting lattice belongs to the icosa- 
hedral lattice in four dimensions, which has a holo- 
hedral point group of order 240 (Brown et  al., 1978). 
Experimentally this has consequences. For a 
reciprocal-lattice vector of 2 '  in a general position, 
there are 239 other equivalent vectors. The corre- 
sponding diffraction peaks should show the same 
intensity for all 240 vectors, although in three 
dimensions they do not have the same length, and 
are not symmetry related. In this way such an irreduc- 
ible structure would be observable. 

Just as for IC phases one could expect new lattice 
modes. For IC phases these are the phason and 
amplitudon modes. In principle, quasi-crystals can 
also show d additional phason modes. Here, however, 

the difference between modulated and quasi-crystals 
may be important. As seen in the examples of the 
Fibonacci chain and the Penrose tiling, the higher- 
dimensional structures corresponding to quasi-crys- 
tals have disconnected elements. The situation is com- 
parable with that of modulated crystals in the discom- 
mensuration domain, where the modulation function 
also has discontinuities or, at least, a non-smooth 
behaviour. There the result is that the phason 
frequency is no longer zero (Janssen & Tjon, 1983). 
For the same reason one may expect for quasi-crystals 
a non-zero frequency phason. The reason is that the 
motion of particles is smooth when the phase of the 
modulation of a sinusoidally modulated crystal is 
changed, but that the particles have to jump from 
one position to another when the 'phase' of a quasi- 
crystal is changed. 

The self-similarity properties of quasi-crystals can 
be accounted for also by the periodic structure that 
is by definition already self-similar. 

I have not talked about the origin of the quasi- 
crystalline state. A partial answer is given by the 
papers using Landau theory mentioned in § 1. A 
microscopic theory for the stability of the quasi-crys- 
talline state has not been given as far as I know. The 
stability of the quasi-crystalline state has relations 
with the problem of the densest packing of spheres. 
In two dimensions the densest packing of circles is 
the hexagonal structure, where each circle touches 
six others. In three dimensions the problem is un- 
solved. Both f.c.c, and h.c.p, structures have a packing 
fraction (Tr/6)V~ but it has not been shown that this 
is a maximum. {An upper bound v/]-8[cos-l(~)- zr/3] 
has been given by Rogers (1958).} In the case of h.c.p. 
12 spheres touch each sphere, but the orientations of 
the 12 common points are not regularly distributed 
(there are angles of 60 and 90°). A regular distribution 
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would give the 12 vertices of an icosahedron and 
locally icosahedral symmetry, which is, of  course, in 
conflict with periodicity, but  as we have seen not with 
quasi-periodicity. 

I thank J. C. Toledano, R. Struikmans and the 
referee for pointing out relevant references. 
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Abstract 

Deformation and valence-electron densities in silicon 
are derived via Fourier summation and multipole 
refinement of  highly accurate measurements of X-ray 
structure factors. These results provide a new perspec- 
tive for the comparison between theory and experi- 
ment. The model electron density derived from 
experiment is in quantitative agreement with recent 
solid-state calculations, but  not with earlier experi- 
mental results reported by Yang & Coppens [Solid 
State  C o m m u n .  (1974), 15, 1555-1559]. 

Introduction 

Experimental  electron distributions for crystalline 
silicon have been the subject of  numerous investiga- 
tions [e.g. see Scheringer (1980), Fehlmann (1979), 

* Present address: Department of Crystallography, University 
of Pittsburgh, Pittsburgh, PA 15260, USA. 

Price, Maslen & Mair (1978; referred to below as 
PMM),  Yang & Coppens (1974; referred to as YC), 
Aldred & Hart  (1973; referred to as AH)  and referen- 
ces therein]. In this work we take advantage of  recent 
highly accurate experimental reports on silicon, 
which, in combination with the earlier measurements 
of  AH, provide data sets of  extraordinarily high 
quality. 

The important  222 reflection in silicon was 
remeasured by M E r e ,  Yelon & Schneider (1982), 
with an accuracy better, by a factor of between two 
and ten, than previous measurements. Alkire et al. 
report F222 at room temperature with an accuracy of  
0.5%, a measurement  of  accuracy similar to the AH 
data ( - 0 . 1 % ) .  

Teworte & Bonse (1984) measured silicon structure 
factors for 16 reflections at room temperature with 
both Ag K a l  and Mo K a l  radiations which were also 
used by AH. Teworte & Bonse's work verified AH's  
measurements,  and confirmed the claimed accuracy 
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